Estadistica No Parametrica

Estadistica No Parametrica

La mayor parte de los procedimientos de prueba de hipótesis que se presentan en las unidades anteriores se basan en la suposición de que las muestras aleatorias se seleccionan de poblaciones normales. Afortunadamente, la mayor parte de estas pruebas aún son confiables cuando experimentamos ligeras desviaciones de la normalidad, en particular cuando el tamaño de la muestra es grande. Tradicionalmente, estos procedimientos de prueba se denominan métodos paramétricos. En esta sección se consideran varios procedimientos de prueba alternativos, llamados no paramétricos ó métodos de distribución libre, que a menudo no suponen conocimiento de ninguna clase acerca de las distribuciones de las poblaciones fundamentales, excepto que éstas son continuas.

Los procedimientos no paramétricos o de distribución libre se usan con mayor frecuencia por los analistas de datos. Existen muchas aplicaciones en la ciencia y la ingeniería donde los datos se reportan no como valores de un continuo sino mas bien en una escala ordinal tal que es bastante natural asignar rangos a los datos.

Un ejemplo donde se aplica una prueba no paramétrica es el siguiente, dos jueces deben clasificar cinco marcas de cerveza de mucha demanda mediante la asignación de un grado de 1 a la marca que se considera que tiene la mejor calidad global, un grado 2 a la segunda mejor, etcétera. Se puede utilizar entonces una prueba no paramétrica para determinar donde existe algún acuerdo entre los dos jueces.

Se debe señalar que hay varias desventajas asociadas con las pruebas no paramétricas. En primer lugar, no utilizan la información que proporciona la muestra, y por ello una prueba no paramétrica será menos eficiente que el procedimiento paramétrico correspondiente, cuando se pueden aplicar ambos métodos. En consecuencia, para lograr la misma potencia, una prueba no paramétrica requerirá la correspondiente prueba no paramétrica.

Como se indicó antes, ligeras divergencias de la normalidad tienen como resultado desviaciones menores del ideal para las pruebas paramétricas estándar. Esto es cierto en particular para la prueba t y la prueba F. En el caso de la prueba t y la prueba F, el valor P citado puede ser ligeramente erróneo si existe una violación moderada de la suposición de normalidad.

En resumen, si se puede aplicar una prueba paramétrica y una no paramétrica al mismo conjunto de datos, debemos aplicar la técnica paramétrica más eficiente. Sin embargo, se debe reconocer que las suposiciones de normalidad a menudo no se pueden justificar, y que no siempre se tienen mediciones cuantitativas.


Mis sitios nuevos:
Emprendedores
Politica de Privacidad